Search results

Search for "hybrid material" in Full Text gives 10 result(s) in Beilstein Journal of Organic Chemistry.

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • of Fe3O4 nanoparticles (Scheme 15) [101][102]. This organic–inorganic hybrid material was synthesized by the immobilization of the dodecatungstovanadophosphoric acid (HPA) on TPI-Fe3O4 with N-[3-(triethoxysilyl)propyl]isonicotinamide (TPI), acting as the linker for the heterogeneous catalyst, while
PDF
Album
Review
Published 22 Feb 2024

Insight into functionalized-macrocycles-guided supramolecular photocatalysis

  • Minzan Zuo,
  • Krishnasamy Velmurugan,
  • Kaiya Wang,
  • Xueqi Tian and
  • Xiao-Yu Hu

Beilstein J. Org. Chem. 2021, 17, 139–155, doi:10.3762/bjoc.17.15

Graphical Abstract
  • physical barrier in photocatalytic reactions. To address this issue, Chen and co-workers prepared a TiO2–AuNCs@β-CD-based hybrid material on TiO2 and β-CD-protected AuNCs, which can potentially be used for the photocatalytic degradation of methyl orange (MO) dye (Figure 8) [28]. Upon UV-light irradiation
  • , this hybrid material rapidly degraded MO (≈98%) within 10 min, whereas freshly prepared TiO2 reached a value of ≈47%. This may be due to the synergic effect of β-CD and the AuNCs, which relies on two aspects: i) the host–guest interaction between β-CD and MO could lead to the Au cores being directly
  • and photocatalysis [33][34][35]. Su and co-workers reported a hybrid material based on a calixarene-modified dye and TiO2 (HO-TPA–TiO2) [36]. The calixarene could combine with TiO2, providing efficient electron transfer between them (Figure 11). The TPA–TiO2 system exhibits an efficient H2 evolution
PDF
Album
Review
Published 18 Jan 2021

Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium(II) complex

  • Kazuhiko Maeda,
  • Daehyeon An,
  • Ryo Kuriki,
  • Daling Lu and
  • Osamu Ishitani

Beilstein J. Org. Chem. 2018, 14, 1806–1812, doi:10.3762/bjoc.14.153

Graphical Abstract
  • phase. Keywords: artificial photosynthesis; heterogeneous photocatalysis; hybrid material; metal complexes; solar fuels; Introduction Carbon nitride is one of the oldest synthetic polymers [1], and has several allotropes. Among them, graphitic carbon nitride (g-C3N4) is the most stable form and is an
PDF
Album
Full Research Paper
Published 17 Jul 2018

Phosphonic acid: preparation and applications

  • Charlotte M. Sevrain,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2017, 13, 2186–2213, doi:10.3762/bjoc.13.219

Graphical Abstract
  • crystalline hybrid material [85]. The coordination properties of phosphonic acid were also applied to design tetraazamacrocyclic compounds functionalized with phosphonic acid pendant arms. As an example, ((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetrakis(methylene))tetraphosphonic acid, DOTP, compound
PDF
Album
Review
Published 20 Oct 2017

Block copolymers from ionic liquids for the preparation of thin carbonaceous shells

  • Sadaf Hanif,
  • Bernd Oschmann,
  • Dmitri Spetter,
  • Muhammad Nawaz Tahir,
  • Wolfgang Tremel and
  • Rudolf Zentel

Beilstein J. Org. Chem. 2017, 13, 1693–1701, doi:10.3762/bjoc.13.163

Graphical Abstract
  • treatment at 650 °C of the hybrid material enables the conversion of the polymer shell into a carbon shell. The required block copolymers containing the carbonizable block and the anchoring block, which can bind onto the nanoparticle surface, was synthesized by RAFT polymerization as described in Figure 1b
  • alcohol, which was used as a solvent for the synthesis. As a rough estimate for the weight loss of the coordinated polymer only the weight loss above 240 °C is considered to 20%. For the carbonization process the hybrid material was pyrolyzed in argon atmosphere and heated up to 650 °C. The application of
  • addition, a macroscopic color change of the hybrid material can be observed. As-synthesized TiO2 nanoparticles coated with the block copolymer looks brown due to the bound catechol. However, the color turns black after the pyrolysis (Figure 4d) indicating the presence of carbon material. This was proven by
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2017

Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

  • Markus Börgardts and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2017, 13, 768–778, doi:10.3762/bjoc.13.76

Graphical Abstract
  • concentrations were reacted with free silanol groups displayed on the surface of MCM-41 furnishing hybrid materials with different dye loadings in a μmol·g−1 range. The amount of dye incorporated into the hybrid material was estimated by UV–vis spectroscopic analysis according to our previous report [24]. The
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2017

Recent advances in metathesis-derived polymers containing transition metals in the side chain

  • Ileana Dragutan,
  • Valerian Dragutan,
  • Bogdan C. Simionescu,
  • Albert Demonceau and
  • Helmut Fischer

Beilstein J. Org. Chem. 2015, 11, 2747–2762, doi:10.3762/bjoc.11.296

Graphical Abstract
  • between the metal and the organic polymer backbone and/or side chains is crucial for ensuring the desired properties for the hybrid material [68]. Indeed, when appraising luminescence of a series of polynorbornenes attaching various homoleptic bi- or trinuclear lanthanide salen complexes (with La, Nd, Yb
PDF
Album
Review
Published 28 Dec 2015

Spin state switching in iron coordination compounds

  • Philipp Gütlich,
  • Ana B. Gaspar and
  • Yann Garcia

Beilstein J. Org. Chem. 2013, 9, 342–391, doi:10.3762/bjoc.9.39

Graphical Abstract
PDF
Album
Review
Published 15 Feb 2013

Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

  • Ângelo M. L. Denadai,
  • Frederico B. De Sousa,
  • Joel J. Passos,
  • Fernando C. Guatimosim,
  • Kirla D. Barbosa,
  • Ana E. Burgos,
  • Fernando Castro de Oliveira,
  • Jeann C. da Silva,
  • Bernardo R. A. Neves,
  • Nelcy D. S. Mohallem and
  • Rubén D. Sinisterra

Beilstein J. Org. Chem. 2012, 8, 1867–1876, doi:10.3762/bjoc.8.215

Graphical Abstract
  • solutions, described previously [4]. Thus, the inclusion of βCD in the inorganic matrix increased the ion adsorption, demonstrating the importance of choosing the organic component in a hybrid material carefully. Fe-Ni/Zn adsorption capacity for the Cr3+ cation was similar to that observed when βCD was used
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2012

Chromo- and fluorophoric water-soluble polymers and silica particles by nucleophilic substitution reaction of poly(vinyl amine)

  • Katja Hofmann,
  • Ingolf Kahle,
  • Frank Simon and
  • Stefan Spange

Beilstein J. Org. Chem. 2010, 6, No. 79, doi:10.3762/bjoc.6.79

Graphical Abstract
  • chain. The synthesis was achieved by two different approaches. The first method included the use of β-DMCD to render 1 compatible to PVAm dissolved in water. The SNArH reaction between the two reactants was carried out in homogeneous phase. The second approach was to synthesize a hybrid material by the
  • individual polymer chains, resulting in a decreased glass transition temperature. Synthesis and characterization of the hybrid material As can be seen from Scheme 3, carbonitrile 1 was adsorbed from its dichloromethane solution onto carefully dried silica particles (Kieselgel 60, Merck). The 1-loaded silica
  • peak C. The area of component peak C is ca. 4.9% of the C 1s area. As noted above, the amino groups of the PVAm polymer can be protonated by hydronium ions. In Figure 2b the N 1s high-resolution spectrum of the PVAm/silica hybrid material shows such protonated amino groups (component peak G), clearly
PDF
Album
Full Research Paper
Published 22 Jul 2010
Other Beilstein-Institut Open Science Activities